"I FOLLOW YOU, I BECOME YOU": THE INFLUENCE OF MICRO VS MEGA INFLUENCERS' ATTRIBUTES AND FOLLOWER EMOTIONS ON TRANSFER OF EMOTIONAL ATTACHMENT AND PURCHASE INTENTION IN INDONESIA'S BEAUTY INDUSTRY

Florean Haya Soraya Azalia Erda^{1*}, Rifelly Dewi Astuti²

Master of Management, Faculty of Economics and Business, University of Indonesia email: florean.haya@ui.ac.id¹*

Master of Management, Faculty of Economics and Business, University of Indonesia email: rifelly.dewi@ui.ac.id²

ABSTRACT

The rapid growth of the beauty industry in Indonesia has emphasized the role of influencers in building emotional attachment that can influence consumers' purchase intention. This study examines the influence of influencer attributes—namely similarity, inspiration, authenticity, attractiveness, and fun personality—on the transfer of emotional attachment and purchase intention, both directly and through the mediation of emotional attachment and envy. This research offers novelty by comparing the effectiveness of microinfluencers and mega-influencers in the context of Indonesia's beauty industry and applies the Integrative Scale of Digital Influence framework to analyze both direct and indirect effects between variables. The data were collected through a survey of 421 respondents, consisting of 209 mega-influencer followers and 212 micro-influencer followers, and analyzed using PLS-SEM and multi-group analysis. The findings indicate that micro-influencers are more effective in fostering emotional closeness and encouraging purchase intention through perceived authenticity, while mega-influencers tend to influence purchase intention more directly through inspirational content. Feelings of envy did not show a significant impact on emotional attachment or purchase intention. These findings emphasize the importance of selecting influencers based on campaign objectives—micro-influencers for building loyalty, and mega-influencers for quickly reaching a broad audience.

Keywords: Influencer Marketing, Beauty Industry, Emotional Attachment, Micro-Influencer, Mega-Influencer, Purchase Intention.

INTRODUCTION

The beauty industry is one of the fastest-growing sectors and holds a large market share in almost every part of the world, including Indonesia. This growth is closely related to the increasing needs and desires of the public for beauty products over time. These beauty products consist of various types such as skincare, makeup, body care, and hair care. The growing awareness and concern of the public regarding their appearance and skin health is the main reason for the expansion of beauty products. This is evidenced by the influx of international beauty products into Indonesia and the emergence of numerous local beauty brands.

In Indonesia, the beauty industry has grown in line with the rising awareness among the public of the importance of self-care. Beauty products have become the second most purchased category on e-commerce platforms, accounting for around 50% of total purchases (Jauhari, 2023). This indicates that beauty products are highly favored by consumers in Indonesia, second only to fashion products. This situation has driven both local and

international beauty brands to compete by launching various product innovations to attract consumer attention. The increasing number of beauty product types motivates consumers to keep purchasing these new innovations in hopes of achieving the best results for their self-care routines.

Beauty products also rank first in the category of fast-moving consumer goods (FMCG). FMCG refers to consumer goods that are directly related to daily needs. Sales of beauty products have reached IDR 2.9 trillion, with a total of 77.6 million products sold.

The high growth in sales and demand for beauty products is driven by several factors, including increased consumer awareness of the importance of maintaining physical appearance, easier access to various beauty products, and the dominance of beauty-related content on social media. One of the main influencing factors is the emergence of the phenomenon known as digital influence. Digital influence involves the use of digital platforms to affect someone's opinions, attitudes, and behaviors. These platforms have

ISSN Online: 2613-9774 significantly higher fees compared to non-celebrity

ISSN Cetak : 2337-3997

created a new marketing ecosystem known as influencer marketing. In this system, influencers act as a bridge between brands and consumers by building emotional connections with their followers. Influencers' impact on social media plays a major role in shaping consumers' opinions and decisions regarding a product.

In today's rapidly evolving digital era, the presence and variety of social media platforms have grown significantly. Platforms like Instagram, TikTok, and YouTube are experiencing increasing user numbers in Indonesia. According to data from Hootsuite, the number of social media users in Indonesia reached 167 million in 2023, which is 60.4% of the total population. Hootsuite also reported that 50.4% of people use social media to seek inspiration for what to do or what products to buy (Riyanto, 2023). This shows that consumers rely on social media to gather product-related information before making purchasing decisions, including beauty products. This trend presents a major opportunity for beauty companies to promote their products through digital content.

With the growing use of social media, more influencers have emerged across platforms. Influencers are individuals who have a significant number of followers and can influence their audience's attitudes or purchase decisions through their personal appeal and credibility (Lou & Yuan, 2019). These influencers significantly impact beauty product marketing. They share various types of beauty content, such as product reviews, self-care routines, and makeup tutorials. This content influences their followers' emotions and, ultimately, their purchasing decisions.

Influencer marketing has become a major and continuously growing marketing phenomenon. What makes this strategy attractive is the variety of characteristics and skills that influencers possess. Influencers differ significantly in various aspects, as brand image building. follower demographics, engagement levels, payment specific requirements. and their expertise (Campbell & Farrell, 2020). All these factors contribute value and benefits that influencers can offer to companies or brands.

Celebrity influencers are widely known individuals recognized by the public beyond social media platforms and are often used by brands due to their vast followings (Campbell & Farrell, 2020). Although these influencers achieved fame before social media, they now also use these platforms to support their careers and build brand partnerships. Celebrity influencers typically have more than 1 million followers and sign high-value contracts with major brands in line with their professional fields, allowing them to command

influencers (Campbell & Farrell, 2020).

Similarly, mega-influencers are individuals with large followings on social media more than 1 million followers who have achieved celebrity status based on specific expertise (Campbell & Farrell, 2020). The key difference is that mega-influencers did not have celebrity status before gaining popularity on social media. Additionally,

Farrell, 2020). The key difference is that mega-influencers did not have celebrity status before gaining popularity on social media. Additionally, mega-influencers tend to focus more on paid partnerships to strengthen their brand (Campbell & Farrell, 2020). In Indonesia's beauty industry, one example of a mega-influencer is Tasya Farasya, who has 7 million followers on Instagram. One form of her influence is the hashtag or label #TasyaFarasyaApproved, which she uses to recommend certain beauty products to her followers. As an influencer, Tasya serves as a role model for her followers when it comes to choosing beauty products. This level of trust can significantly impact consumer purchase intentions and decisions.

Unlike celebrity and mega-influencers, macro-influencers are not yet celebrities but still enjoy considerable popularity on social media, with follower counts ranging from 100,000 to 1 million (Campbell & Farrell, 2020). Macro-influencers have high engagement rates and offer great brand exposure due to their large follower base. Even though their posting rates are more affordable, they still deliver substantial value to brands (Campbell & Farrell, 2020). Followers of macro-influencers often aspire to be like them, as they are seen as more relatable and attainable, making their achievements seem possible to replicate.

On the other hand, there are influencers who are just starting out and building their careers as influencers namely, micro-influencers and nanoinfluencers. Micro-influencers have follower counts ranging from 10,000 to 100,000 and often use features like Instagram Stories to create closer connections with their audience, enhancing perceptions of accessibility and authenticity (Campbell & Farrell, 2020). Followers tend to view micro-influencers' recommendations as more sincere compared to larger influencers, as they are perceived as being less commercially driven. This makes micro-influencers increasingly attractive to marketing managers, who value their authenticity, trustworthiness, and alignment with followers' needs and interests (Wissman, 2018).

Nano-influencers have fewer than 10,000 followers, most of whom are friends, acquaintances, or people in their local communities (Campbell & Farrell, 2020). These nano-influencers are attractive options for brands due to

their willingness to work without monetary compensation, often accepting free products or exposure in return. Understanding the differences among influencer types helps companies or brands tailor their marketing strategies to meet promotional goals and target audiences more effectively.

Previous research has stated that digital influence is the result of interactions between influencers and their followers, where followers assess the influencer's attributes and emotionally respond to them (Silva et al., 2025). The study introduced the Integrative Scale of Digital which combines evaluations of Influence, influencer characteristics with the emotional responses of followers. It highlights two main dimensions of digital influence: the follower's influencer assessment of characteristics (assessment) and the follower's own emotional responses (self-assessment) (Silva et al., 2025). The study found that digital influence depends not only on the influencer's attributes but also on the follower's emotional reactions. However, the research was limited to a general context and did not examine specific industries, products, or influencer categories.

Therefore, this study aims to fill the research gap by applying the *Integrative Scale of Digital Influence* in a more specific context the beauty product industry in Indonesia. This industry is considered highly relevant for several reasons. First, the global beauty industry, including in Indonesia, relies heavily on influencer marketing. Social media has become a key platform for beauty product promotion, with influencers playing a vital role. Second, beauty product consumers often make purchasing decisions based on influencer reviews or recommendations. Hence, the emotional bond between influencers and their followers becomes a crucial factor in driving purchase

intentions. Additionally, the beauty industry is deeply connected to consumer emotions, such as envy, which directly relates to the *self-assessment* dimension in the *Integrative Scale of Digital Influence*.

This study utilizes multi-group analysis focusing on micro-influencers and mega-influencers to compare the effectiveness of both types in influencer marketing strategies. Micro-influencers are known for their emotional closeness to their followers. This closeness builds deeper trust and creates strong emotional attachment, even triggering feelings of envy among followers. In the context of the beauty industry, such envy arises because followers feel they can achieve similar physical appearances as the influencer. This motivates them to purchase the products promoted or used by the influencer in hopes of matching the beauty standards they see.

LITERATURE REVIEW

Social Media Marketing (SMM)

Social Media Marketing (SMM) is a digital marketing strategy that utilizes social media platforms to promote brands, products, and services with the aim of increasing brand awareness, customer engagement, and sales conversions. Social media marketing employs various techniques such as content marketing, paid advertising, and direct interaction with the audience to build closer relationships with customers (Tuten, 2017).

Influencer Marketing

Influencer marketing is a marketing strategy that involves collaboration between a brand or company and individuals who have influence and popularity on social media or within a specific industry (Chopra et al., 2021).

The Source Credibility Theory

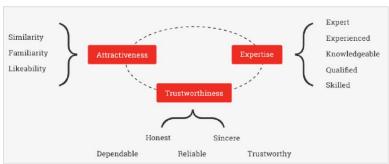


Figure 1. The Ohanian Model of Source Credibility

The source credibility theory explains how the credibility of a source can influence the effectiveness of communication and persuasion. This theory emphasizes that audiences are more likely to accept messages from sources they perceive as credible in a particular field. The model of source credibility developed by Ohanian (1990) states that any information coming from a

trustworthy source can influence the audience's attitudes and behaviors toward the message source. This model discusses how the perceived credibility of a celebrity can affect customer attitudes and behaviors toward endorsed products (Priester & Petty, 2003).

The Source Attractiveness Theory

The source attractiveness theory is one of the theories used in communication and marketing and is an important element in persuasion (McGuire, 1985). This theory explains how the characteristics of an information source influence the acceptance and effectiveness of the message among audiences.

The Emotional Attachment Theory

The emotional attachment theory explains the strong and enduring emotional bond between individuals and an object, brand, or another person. This theory is rooted in the concept of attachment. According to Bowlby (1969), attachment is a deep emotional bond between individuals who have a tendency to seek closeness and a sense of security from the relationship. This relationship can drive long-term loyalty and engagement with a brand (Thomson et al., 2005).

RESEARCH METHOD

This study employs a quantitative method to collect and analyze data. The data used in this research are primary data. The data collection method applied in this study is through a questionnaire. The primary data were collected using an online questionnaire created through the Google Forms platform. The questionnaire consists of several closed-ended questions using a five-point Likert scale.

The respondents involved in this study are Indonesian citizens (WNI) currently residing in Indonesia, aged 18 to 44 years, who are active users of Instagram. Respondents must have purchased beauty products based on the

recommendations of beauty influencers within the past three months.

The population in this study consists of consumers of beauty products in Indonesia. This includes all users of various types of beauty products, such as skincare, makeup, body care, hair care, and others. The sampling technique used in this research is non-probability sampling, specifically using the purposive sampling approach.

Purposive sampling, also known as judgmental sampling, was chosen because this study focuses on consumers who actively follow beauty influencers on social media and have made purchases of beauty products based on influencer recommendations within a specified time frame.

To determine the sample size, this study refers to the guidelines proposed by Hair et al. (2021), which state that the minimum number of respondents in a study using PLS-SEM is five to ten times the number of indicators (Rule of Thumb). In this study, there are a total of 45 indicators, so the recommended sample size ranges from 225 to 450 respondents.

To anticipate invalid or failed questionnaire responses and to improve the reliability of the research findings, this study sets a target sample size of 350 respondents.

RESULT AND DISCUSSION

Analysis of Measurement Model (Outer Model) Reliability Test of the Measurement Model

The variables in the study show Cronbach's Alpha values exceeding the minimum threshold of 0.7, indicating that the indicators within each variable consistently represent their respective constructs. The Emotional Attachment variable records the highest value at 0.955, followed by Envy (0.934) and Transfer of Emotional Attachment (0.933), reflecting a very high and stable level of reliability.

Table 1. Results of Reliability Test of the Measurement Model

Variabel	Cronbach's Alpha	Composite Reliability (rho_a)	Composite Reliability (rho_c)
Inspiration	0.811	0.837	0.887
Similarity	0.859	0.860	0.904
Authenticity	0.890	0.898	0.916
Influencer Attractiveness	0.849	0.854	0.908
Fun Personality	0.816	0.836	0.890
Emotional Attachment	0.955	0.957	0.963
Envy	0.934	0.938	0.950
Transfer of Emotional Attachment	0.933	0.935	0.943
Purchase Intention	0.873	0.875	0.922

Moreover, the Composite Reliability values, both rho_A and rho_C, support these findings, with all variables showing values above 0.8. The highest rho_C value is again observed in the Emotional Attachment variable (0.963), indicating that over 96% of its variance is explained by its indicators. Variables such as Envy (0.950) and Transfer of Emotional Attachment (0.943) also exhibit very high Composite Reliability. Even variables with relatively lower Cronbach's Alpha values, like Inspiration (0.811) and Fun Personality

(0.816), still demonstrate good Composite Reliability with rho_C values of 0.887 and 0.890 respectively.

Convergent Validity Test of the Measurement Model

A construct is considered to have good convergent validity if its factor loadings exceed 0.7 and its Average Variance Extracted (AVE) is above 0.5. The Inspiration variable, for instance, has three indicators with high factor loadings: INSP1 (0.867), INSP2 (0.807), and INSP3 (0.875).

Table 2. Results of Convergent Validity Test of the Measurement Model

Variabel	Indikator	Factor Loading	AVE
	INSP1	0.867	0.723
Inspiration	INSP2	0.807	
	INSP3	0.875	
	SML1	0.826	0.703
C::1	SML2	0.831	
Similarity	SML3	0.857	
	SML4	0.838	
	AUT1	0.754	0.646
	AUT2	0.845	
A - 14 14 14 14 14	AUT3	0.782	
Authenticity	AUT4	0.842	
	AUT5	0.748	
	AUT6	0.844	
	IA1	0.869	0.768
Influencer Attractiveness	IA2	0.884	
	IA3	0.875	
	FP1	0.781	0.731
Fun Personality	FP2	0.903	
•	FP3	0.876	
	EA1	0.855	0.786
	EA2	0.912	
	EA3	0.897	
Emotional Attachment	EA4	0.847	
	EA5	0.907	
	EA6	0.906	
	EA7	0.880	
	E1	0.800	0.793
	E2	0.894	
Envy	E3	0.925	
	E4	0.925	
	E5	0.902	
	TEA1	0.837	0.625
	TEA2	0.821	
	TEA3	0.839	
	TEA4	0.812	
	TEA5	0.749	
Transfer of Emotional Attachment	TEA6	0.763	
	TEA7	0.728	
	TEA8	0.789	
	TEA9	0.803	
	TEA10	0.757	
	PI1	0.877	0.798
Purchase Intention	PI2	0.928	0

Variabel	Indikator	Factor Loading	AVE
	PI3	0.874	

All variables show AVE values above the minimum threshold of 0.50, and most even exceed 0.70. This implies that more than 70% of the variance in each variable is derived from its indicators, rather than from measurement errors or other external factors. Variables like Purchase Intention (AVE = 0.798), Emotional Attachment (0.786), Envy (0.793), and Influencer

Attractiveness (0.768) exhibit very high convergent validity. However, two constructs show relatively lower AVE values: Authenticity (0.646) and Transfer of Emotional Attachment (0.625). Overall, the measurement model satisfies the criteria for good convergent validity.

Discriminant Validity Test of the Measurement Model

Table 3. Results of Discriminant Validity Test – Fornell-Larcker

	Tuble 5. Results of Discriminant Valuaty Test Tomen Eureker								
	AUT	E	EA	FP	IA	INSP	PI	SML	TEA
AUT	0.804								
${f E}$	0.106	0.890							
$\mathbf{E}\mathbf{A}$	0.456	0.563	0.887						
FP	0.703	0.024	0.375	0.855					
IA	0.753	-0.094	0.235	0.774	0.876				
INSP	0.776	-0.061	0.303	0.716	0.768	0.850			
PI	0.620	0.273	0.617	0.504	0.512	0.569	0.893		
\mathbf{SML}	0.797	0.185	0.558	0.683	0.659	0.730	0.660	0.838	
TEA	0.651	0.306	0.715	0.593	0.521	0.552	0.766	0.680	0.791

The discriminant validity test using the Fornell-Larcker criterion shows that the square root of the AVE for each variable is higher than its correlations with other variables in the same row or column. For example, the variable Authenticity

(AUT) has a square root AVE value of 0.804, which is higher than its correlations with other variables. This confirms that each variable has good discriminant validity—meaning it is empirically distinct from the others in the model.

Table 4. Results of Discriminant Validity Test – Heterotrait-Monotrait (HTMT)

	Table 4.	ixesuits of i	Discriminai	it vailuity.	1 681 – 116161	ou an-mon	onan (mm	11)	
	AUT	E	EA	FP	IA	INSP	PI	SML	TEA
AUT									_
${f E}$	0.132								
EA	0.484	0.599							
FP	0.831	0.127	0.407						
IA	0.867	0.121	0.251	0.940					
INSP	0.915	0.118	0.323	0.892	0.933				
PΙ	0.699	0.303	0.675	0.596	0.591	0.661			
\mathbf{SML}	0.911	0.201	0.608	0.815	0.771	0.867	0.761		
TEA	0.711	0.317	0.745	0.680	0.588	0.628	0.846	0.755	

Using the cross-loading approach, all indicators load higher on their respective constructs than on others. Most loadings are above 0.7, indicating that indicators accurately reflect their intended variables. Therefore, this

measurement model also meets the discriminant validity criteria via the Cross Loading approach, confirming that each construct is empirically distinguishable.

Table 5	Reculte	of Discrimi	inant Validity	Test _ Cross	Loading
Table 5	. Results	OL DISCITIII	manı vandıv	rest – Cross	Loading

-		able 5. Resi						CRAT	rinte A
A T 1/214	AUT	E	EA	FP	IA	INSP	PI	SML	TEA
AUT1	0.754	-0.052	0.227	0.548	0.616	0.663	0.448	0.577	0.427
AUT2	0.845	0.088	0.380	0.561	0.594	0.634	0.523	0.684	0.549
AUT3	0.782	0.075	0.372	0.642	0.670	0.642	0.467	0.637	0.525
AUT4	0.842	0.141	0.456	0.552	0.610	0.661	0.559	0.678	0.590
AUT5	0.748	0.120	0.337	0.511	0.528	0.536	0.433	0.588	0.499
AUT6	0.844	0.106	0.390	0.584	0.622	0.614	0.544	0.668	0.527
E1	0.088	0.800	0.465	0.025	-0.081	-0.053	0.248	0.118	0.238
E2	0.127	0.894	0.564	0.078	-0.049	-0.011	0.268	0.205	0.304
E3	0.088	0.925	0.516	-0.001	-0.101	-0.057	0.243	0.183	0.278
E4	0.095	0.925	0.502	-0.019	-0.090	-0.056	0.257	0.172	0.283
E5	0.072	0.902	0.455	0.023	-0.101	-0.101	0.198	0.138	0.255
EA1	0.357	0.528	0.855	0.309	0.141	0.200	0.496	0.453	0.595
EA2	0.414	0.561	0.912	0.351	0.195	0.238	0.551	0.497	0.653
EA3	0.339	0.585	0.897	0.267	0.134	0.181	0.503	0.439	0.553
EA4	0.374	0.505	0.847	0.285	0.179	0.231	0.522	0.431	0.581
EA5	0.444	0.452	0.907	0.350	0.268	0.329	0.585	0.528	0.663
EA6	0.406	0.475	0.906	0.368	0.228	0.307	0.572	0.551	0.670
EA7	0.481	0.412	0.880	0.379	0.293	0.368	0.589	0.546	0.705
FP1	0.597	-0.129	0.165	0.781	0.713	0.651	0.408	0.526	0.439
FP2	0.604	0.042	0.350	0.903	0.654	0.613	0.430	0.615	0.529
FP3	0.609	0.111	0.412	0.876	0.639	0.590	0.453	0.606	0.544
IA1	0.674	0.010	0.292	0.659	0.869	0.643	0.485	0.617	0.490
IA2	0.661	-0.134	0.160	0.703	0.884	0.689	0.432	0.570	0.463
IA3	0.640	-0.139	0.153	0.673	0.875	0.691	0.422	0.537	0.408
INSP1	0.652	-0.072	0.234	0.665	0.684	0.867	0.483	0.608	0.467
INSP2	0.643	-0.152	0.150	0.591	0.663	0.807	0.384	0.553	0.382
INSP3	0.684	0.031	0.353	0.579	0.627	0.875	0.558	0.684	0.536
PI1	0.569	0.143	0.492	0.522	0.536	0.551	0.877	0.588	0.693
PI2	0.583	0.268	0.578	0.460	0.463	0.526	0.928	0.641	0.707
PI3	0.509	0.324	0.586	0.365	0.371	0.446	0.874	0.538	0.651
SML1	0.584	0.252	0.568	0.516	0.446	0.533	0.538	0.826	0.596
SML2	0.705	0.083	0.437	0.641	0.626	0.693	0.562	0.831	0.582
SML3	0.661	0.118	0.404	0.579	0.564	0.602	0.548	0.857	0.548
SML4	0.729	0.156	0.449	0.560	0.584	0.626	0.566	0.838	0.550
TEA1	0.551	0.162	0.550	0.468	0.466	0.475	0.613	0.565	0.837
TEA2	0.550	0.184	0.506	0.511	0.478	0.487	0.639	0.508	0.821
TEA3	0.532	0.337	0.638	0.467	0.402	0.422	0.642	0.572	0.839
TEA4	0.548	0.144	0.514	0.454	0.421	0.464	0.579	0.559	0.812
TEA5	0.528	0.068	0.374	0.520	0.470	0.484	0.544	0.490	0.749
TEA6	0.487	0.224	0.462	0.486	0.430	0.411	0.562	0.479	0.763
TEA7	0.504	0.060	0.421	0.504	0.513	0.527	0.586	0.461	0.728
TEA8	0.538	0.249	0.634	0.476	0.409	0.466	0.597	0.593	0.789
TEA9	0.500	0.417	0.745	0.441	0.314	0.349	0.642	0.598	0.803
TEA10	0.415	0.497	0.733	0.386	0.256	0.310	0.631	0.527	0.757

Structural Model Analysis (Inner Model) Collinearity Test of the Structural Model

The Variance Inflation Factor (VIF) values indicate that the highest collinearity is observed

between Authenticity (AUT) and Purchase Intention (PI) at 4.142, while the lowest is between Envy (E) and both Purchase Intention (PI) and Transfer of Emotional Attachment (TEA) at 1.631.

These values suggest that multicollinearity is within an acceptable range and no variable

excessively dominates others.

Table 6. VIF Results of the Structural Model

	AUT	E	EA	FP	IA	INSP	PI	SML	TEA
AUT		3.944	3.944				4.142		4.082
${f E}$							1.631		1.631
EA							3.051		2.219
FP		2.953	2.953				3.075		3.025
IA		3.526	3.526				3.790		3.766
INSP		3.409	3.409				3.574		3.562
PI									
\mathbf{SML}		3.135	3.135				3.725		3.698
TEA							3.089		

Structural Model Strength Test

The highest R² value is found in Transfer of Emotional Attachment (TEA) at 0.676, followed by Purchase Intention (PI) at 0.649. This indicates that the model explains about 67.6% of the variance in TEA and 64.9% in PI, which is considered strong. Meanwhile, Emotional

Attachment (EA) has an R² of 0.383 and Envy (E) is at 0.161, indicating limited explanatory power. The Adjusted R² values, being close to R², indicate model stability and minimal influence from the number of predictors. Thus, the structural model is considered to have good strength, especially in explaining the main variables TEA and PI.

Table 7. R² & Adjusted R² Results of the Structural Model

	R-square	R-square adjusted
E	0.161	0.151
EA	0.383	0.376
PI	0.649	0.642
TEA	0.676	0.671

The F^2 values assess the effect size of each variable. Emotional Attachment (EA) has the highest impact on Transfer of Emotional Attachment (TEA) with $F^2 = 0.375$, highlighting its importance in fostering emotional connection with

a brand. Similarity (SML) also strongly affects Emotional Attachment with $F^2 = 0.178$, showing that perceived similarity between influencer and audience is effective in building emotional closeness.

Table 8. F² Effect Size Results of the Structural Model

		Table 6. 1	Litect biz	c resurt	S OI the L	on uctural ivi	odei		
	AUT	E	EA	FP	IA	INSP	PI	SML	TEA
AUT		0.020	0.032				0.000		0.015
\mathbf{E}							0.003		0.000
EA							0.019		0.375
FP		0.003	0.024				0.022		0.016
IA		0.044	0.058				0.011		0.006
INSP		0.042	0.023				0.023		0.003
PΙ									
\mathbf{SML}		0.064	0.178				0.013		0.007
TEA							0.217		

Purchase Intention (PI) also has a moderate contribution to Transfer of Emotional Attachment (TEA) with $F^2 = 0.217$, suggesting that intent to purchase can strengthen emotional bonds. Conversely, variables like Authenticity, Similarity, and Envy show minimal to no effect on key outcomes like PI and TEA (e.g., AUT \rightarrow PI =

0.000, E \rightarrow TEA = 0.000), implying that while these may influence initial perception, they don't significantly drive emotional or behavioral outcomes in this model.

Predictive Relevance Test of the Structural Model

Three variables show good Q² values: Purchase Intention (PI) at 0.507, Transfer of Emotional Attachment (TEA) at 0.414, and Emotional Attachment (EA) at 0.298. These values indicate strong predictive relevance in the model, particularly for the main focus areas. Meanwhile,

variables such as Authenticity (AUT), Fun Personality (FP), Influencer Attractiveness (IA), Inspiration (INSP), and Similarity (SML) have Q² values of 0.000, which is expected as they are exogenous and not predicted by other variables. Envy (E) has a weak but relevant Q² of 0.125.

Table 9. Q² Predictive Relevance Results of the Structural Model

	Q^2 (=1-SSE/SSO)
AUT	0.000
${f E}$	0.125
EA	0.298
FP	0.000
IA	0.000
INSP	0.000
PI	0.507
SML	0.000
TEA	0.414

Overall Significance Test of the Research Model

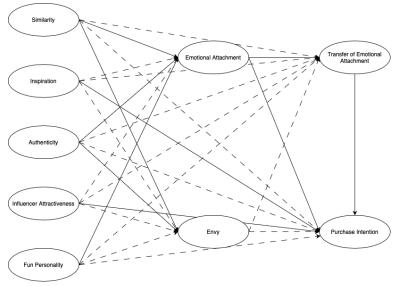


Figure 1. Full Structural Model Results

This test aims to assess whether the proposed structural model significantly explains relationships among variables. Using PLS-SEM (Partial Least Squares Structural Equation Modeling), the model evaluates the validity and significance of the paths between variables. Table 10 outlines the direct effects, displaying the original sample (O), T-value, and P-value for each path.

Authenticity has a significant effect on Envy (p = 0.001) and Emotional Attachment (p = 0.004), indicating that perceived authenticity of an

influencer can evoke envy and foster emotional attachment. However, it does not directly affect Purchase Intention (p=0.799) and has an insignificant effect on Transfer of Emotional Attachment (p=0.069). Fun Personality influences Emotional Attachment (p=0.006) and Transfer of Emotional Attachment (p=0.031), yet its direct effect on Purchase Intention is negative and significant (p=0.010), suggesting that an overly entertaining influencer may reduce the perceived seriousness or credibility of promotional messages.

Table 10. Original Sample, T-Value, P-Value Results – Direct Effects of the Model

	Original sample (O)	T values	P values
AUT -> E	0.257	3.188	0.001
$AUT \rightarrow EA$	0.278	2.879	0.004
$AUT \rightarrow PI$	0.017	0.255	0.799
$AUT \rightarrow TEA$	0.139	1.817	0.069
$E \rightarrow PI$	0.043	1.384	0.166
$E \rightarrow TEA$	-0.009	0.317	0.752
$EA \rightarrow PI$	0.143	2.778	0.005
$EA \rightarrow TEA$	0.519	10.125	0.000
$\mathbf{FP} \rightarrow \mathbf{E}$	0.093	1.242	0.214
$FP \rightarrow EA$	0.209	2.776	0.006
FP -> PI	-0.155	2.584	0.010
$FP \rightarrow TEA$	0.127	2.164	0.031
$IA \rightarrow E$	-0.362	4.780	0.000
$IA \rightarrow EA$	-0.356	4.498	0.000
IA -> PI	0.119	2.092	0.036
$IA \rightarrow TEA$	0.088	1.561	0.119
$INSP \rightarrow E$	-0.348	4.469	0.000
$INSP \rightarrow EA$	-0.218	2.769	0.006
INSP -> PI	0.171	3.035	0.002
INSP -> TEA	0.061	1.001	0.317
$SML \rightarrow E$	0.409	5.177	0.000
$SML \rightarrow EA$	0.587	7.878	0.000
$SML \rightarrow PI$	0.132	1.574	0.115
$SML \rightarrow TEA$	0.093	1.576	0.115
$TEA \rightarrow PI$	0.485	8.214	0.000

For the attribute of influencer attractiveness, an interesting result was found. High physical attractiveness actually has a negative impact on emotional attachment (p=0.000) and envy (p=0.000). This indicates that when an influencer's physical attractiveness is too prominent, the audience may feel less emotionally connected, creating a sense of distance. Nevertheless, influencer attractiveness still shows a significant impact on purchase intention (p=0.036), although the effect is not very strong.

On the other hand, the inspiration variable shows more positive directions—it reduces envy (p = 0.000), increases emotional attachment (p = 0.006), and also drives purchase intention (p = 0.006).

0.002). However, the effect of inspiration on the transfer of emotional attachment was found to be not significant.

Meanwhile, the similarity variable emerges as one of the most stable attributes in forming emotional bonds with the audience. This variable has a significant effect on both envy (p=0.000) and emotional attachment (p=0.000). This suggests that similarity between the influencer and their followers can strengthen emotional attachment. However, this attribute does not directly encourage purchase intention or the transfer of emotional attachment to the brand or product being endorsed by the influencer.

Table 11. Results of Original Sample Measurement, T-Value, and P-Value of the Model (Indirect Effect)

Table 11. Results of Original Sample Mea	surement, T-Value, and P-Valu	ie of the Model (Ir	idirect Effect)
	Original sample (O)	T values	P values
AUT -> E -> PI	0.011	1.163	0.245
$AUT \rightarrow E \rightarrow TEA$	-0.002	0.291	0.771
FP -> E -> PI	0.004	0.805	0.421
IA -> E -> PI	-0.016	1.331	0.183
SML -> E -> TEA -> PI	-0.002	0.312	0.755
FP -> E -> TEA	-0.001	0.236	0.813
INSP -> E -> PI	-0.015	1.280	0.200
$IA \rightarrow E \rightarrow TEA$	0.003	0.309	0.757
$INSP \rightarrow E \rightarrow TEA \rightarrow PI$	0.002	0.303	0.762
$INSP \rightarrow E \rightarrow TEA$	0.003	0.302	0.763
SML -> E -> PI	0.018	1.365	0.172
SML -> EA -> TEA -> PI	0.148	5.192	0.000
INSP -> EA -> TEA -> PI	-0.055	2.568	0.010
$SML \rightarrow E \rightarrow TEA$	-0.004	0.311	0.756
$AUT \rightarrow E \rightarrow TEA \rightarrow PI$	-0.001	0.291	0.771
AUT -> EA -> TEA -> PI	0.070	2.577	0.010
FP -> EA -> TEA -> PI	0.053	2.614	0.009
$FP \rightarrow E \rightarrow TEA \rightarrow PI$	-0.000	0.239	0.811
AUT -> TEA -> PI	0.067	1.781	0.075
E -> TEA -> PI	-0.004	0.317	0.751
EA -> TEA -> PI	0.252	7.058	0.000
FP -> TEA -> PI	0.061	2.031	0.042
IA -> TEA -> PI	0.043	1.514	0.130
INSP -> TEA -> PI	0.029	0.973	0.331
AUT -> EA -> PI	0.040	2.007	0.045
SML -> TEA -> PI	0.045	1.540	0.124
$AUT \rightarrow EA \rightarrow TEA$	0.144	2.703	0.007
FP -> EA -> PI	0.030	1.734	0.083
IA -> EA -> PI	-0.051	2.263	0.024
FP -> EA -> TEA	0.109	2.710	0.007
INSP -> EA -> PI	-0.031	1.857	0.063
IA -> EA -> TEA	-0.185	4.107	0.000
INSP -> EA -> TEA	-0.113	2.644	0.008
SML -> EA -> PI	0.084	2.598	0.009
$SML \rightarrow EA \rightarrow TEA$	0.305	6.020	0.000
IA -> EA -> TEA -> PI	-0.089	3.719	0.000
IA -> E -> TEA -> PI	0.002	0.309	0.758

The analysis of indirect effects shows that the path through emotional attachment (EA) and transfer of emotional attachment (TEA) is the most significant in explaining the influence of influencer attributes on purchase intention. The EA \rightarrow TEA \rightarrow PI pathway is proven to be very strong (p = 0.000), and several attributes—such as inspiration,

fun personality, and authenticity—demonstrate significant indirect effects on purchase intention through this mediation. This indicates that even though these attributes may not directly impact purchase intention, they are effective in shaping it through emotional relationships.

On the other hand, pathways involving envy (E) tend to be insignificant. For example:

- 1. AUT \rightarrow E \rightarrow PI (p = 0.245)
- 2. $\mathbf{FP} \rightarrow \mathbf{E} \rightarrow \mathbf{PI} \ (p = 0.421)$
- 3. INSP \rightarrow E \rightarrow TEA \rightarrow PI (p = 0.762)

All suggest that envy is not an effective path for building attachment or encouraging purchase intention. These findings support the earlier direct effect results, which also showed that envy does not contribute meaningfully to forming purchase intention or transferring emotional attachment to the brand or product.

Overall Model Fit Test

One of the indicators used in this test is the Standardized Root Mean Square Residual (SRMR). An ideal SRMR value is below 0.10, as the smaller the value, the better the model represents the actual data.

Table 12. Model Fit Measurement Results

	Saturated model	Estimated model						
SRMR	0.072	0.097						

The SRMR values obtained are 0.072 for the Saturated model and 0.097 for the Estimated model. Both values are below the maximum threshold of 0.10, indicating that the research model has a good level of fit. The lower SRMR value in the Saturated model suggests that it better represents the overall data structure compared to

the Estimated model, although the difference is not substantial.

Hypothesis Testing

Hypothesis Testing of the Influence of Influencer's Attributes on the Transfer of Emotional Attachment

Table 13. Results of Hypothesis Testing for H1

Hypothesis	Original Sample	T- value	P- value	Hypothesis Statement	Statement	Source
H1a: Influencer's attributes (similarity) positively influence the transfer of emotional attachment. (SML → TEA)	0.093	1.576	0.115	Rejected	Similarity does not influence the transfer of emotional attachment	Silva et al. (2025)
H1b: Influencer's attributes (inspiration) positively influence the transfer of emotional attachment. (INSP → TEA)	0.061	1.001	0.317	Rejected	Inspiration does not influence the transfer of emotional attachment	Silva et al. (2025)
H1c: Influencer's attributes (authenticity) positively influence the transfer of emotional attachment. (AUT → TEA)	0.139	1.817	0.069	Rejected	Authenticity influences the transfer of emotional attachment	Silva et al. (2025)
H1d: Influencer's attributes (influencer attractiveness) positively influence the transfer of emotional attachment. (IA → TEA)	0.088	1.561	0.119	Rejected	Influencer attractiveness does not influence the transfer of emotional attachment	Silva et al. (2025)
H1e: Influencer's attributes (fun personality) positively influence the transfer of emotional attachment. (FP → TEA)	0.127	2.164	0.031	Accepted	Fun personality does not influence the transfer of emotional attachment	Silva et al. (2025)

H1a: Influencer's Attributes (Similarity)
Positively Influence the Transfer of Emotional
Attachment

The hypothesis testing results for H1a, which proposed that influencer attributes (similarity) positively affect the transfer of emotional attachment (SML \rightarrow TEA), indicate that

similarity does not have a significant direct effect on the transfer of emotional attachment. The original sample value was 0.093, with a t-value of 1.576 and a p-value of 0.115, showing that this hypothesis is rejected. This suggests that when the audience perceives similarities with an influencer, it does not automatically lead them to emotionally attach to the product endorsed by that influencer. This finding contradicts the study by Lim et al. (2020), which stated that similarity can strengthen the transfer of emotional attachment from influencer to product. However, this result aligns with previous research by Silva et al. (2025), which found that similarity does not affect the transfer of emotional attachment.

H1b: Influencer's Attributes (Inspiration) Positively Influence the Transfer of Emotional Attachment

The hypothesis testing results for H1b, proposed that influencer attributes (inspiration) positively influence the transfer of emotional attachment (INSP \rightarrow TEA), indicate that inspiration does not have a direct effect on emotional attachment transfer. With an original sample value of 0.061, t-value of 1.001, and pvalue of 0.317, this hypothesis is rejected as it does not meet the statistical significance requirement (p > 0.05). These results are consistent with previous research by Silva et al. (2025), which found that inspiration does not significantly influence the transfer of emotional attachment. This implies that although audiences may feel inspired by an influencer, that feeling does not necessarily lead to an emotional attachment to the product being endorsed. These findings are inconsistent with inspiration theory, which suggests that inspiration can drive the transfer of emotional attachment from influencer to product (Djafarova Rushworth, 2017). This discrepancy may be due to differences in how audiences interpret inspiration, which can vary depending on platform, social context, and the degree of emotional closeness to the influencer.

H1c: Influencer's Attributes (Authenticity) Positively Influence the Transfer of Emotional Attachment

The hypothesis testing results for H1c, which proposed that influencer attributes (authenticity) positively influence the transfer of emotional attachment (AUT \rightarrow TEA), indicate that authenticity does not have a significant direct effect on emotional attachment transfer. The original sample value was 0.139, with a t-value of 1.817 and a p-value of 0.069. Since the p-value is still above 0.05, the hypothesis is rejected. This indicates that an influencer's authenticity alone

does not directly lead the audience to emotionally attach to the product being used or endorsed. These findings do not support the study by Audrezet et al. (2018), which emphasized authenticity as a key factor in building emotional relationships between influencers and their audience.

H1d: Influencer's Attributes (Influencer Attractiveness) Positively Influence the Transfer of Emotional Attachment

The hypothesis testing results for H1d, proposed that influencer attributes (influencer attractiveness) positively influence the transfer of emotional attachment (IA \rightarrow TEA), show that influencer attractiveness does not have a significant direct effect. The original sample value was 0.088, t-value was 1.561, and p-value was 0.119, indicating that this result is not statistically significant and the hypothesis is rejected. These findings are consistent with previous research by Silva et al. (2025), which concluded that influencer attractiveness does not influence the transfer of emotional attachment. However, this contradicts earlier findings such as Ohanian (1990), who stated that physical attractiveness can foster emotional bonds with the audience. This suggests that in the current beauty industry context, physical appearance alone is insufficient to create an emotional connection between the audience and the products used by influencers. Although attractiveness may capture initial attention, it does not directly generate trust or emotional closeness.

H1e: Influencer's Attributes (Fun Personality) Positively Influence the Transfer of Emotional Attachment

The hypothesis testing results for H1e, which examined whether influencer attributes (fun personality) positively influence the transfer of emotional attachment (FP \rightarrow TEA), show that the fun personality attribute has a significant direct effect. The original sample value was 0.127, with a t-value of 2.164 and a p-value of 0.031, indicating a statistically significant influence; hence, the hypothesis is accepted. This demonstrates that a fun and engaging personality in an influencer can indeed strengthen the emotional attachment of the audience toward the products they recommend. This finding supports previous theory that a fun personality can influence audience emotional attachment to influencers (Casaló et al., 2020).

Hypothesis Testing of the Influence of Influencer's Attributes on Purchase Intention

Based on the research results, the following table presents the original sample (O), t-value, and p-value for the model that tests the influence of influencer attributes on purchase intention.

Table 14. Hypothesis Test Results for H2

Hypothesis	Original Sample	T- value	P- value	Hypothesis Status	Previous Research Findings	Source
H2a: Influencer's attributes (similarity) positively influence purchase intention. (SML \rightarrow PI)	0.132	1.574	0.115	Rejected	Similarity influences purchase intention	Silva et al. (2025)
H2b: Influencer's attributes (inspiration) positively influence purchase intention. (INSP \rightarrow PI)	0.171	3.035	0.002	Accepted	Inspiration does not influence purchase intention	Silva et al. (2025)
H2c: Influencer's attributes (authenticity) positively influence purchase intention. (AUT \rightarrow PI)	0.017	0.255	0.799	Rejected	Authenticity influences purchase intention	Silva et al. (2025)
H2d: Influencer's attributes (influencer attractiveness) positively influence purchase intention. (IA → PI)	0.119	2.092	0.036	Accepted	Influencer attractiveness does not influence purchase intention	Silva et al. (2025)
H2e: Influencer's attributes (fun personality) positively influence purchase intention. (FP → PI)	-0.155	2.584	0.010	Rejected	Fun personality does not influence purchase intention	Silva et al. (2025)

H2a: Influencer's attributes (similarity) positively influence purchase intention

The hypothesis test for H2a, which examines whether Influencer's attribute (similarity) positively influences purchase intention (SML → PI), shows that similarity does not have a direct and significant effect on purchase intention (SML \rightarrow PI), with an original sample value of 0.132, tvalue of 1.574, and p-value of 0.115. Because the p-value is greater than 0.05, this hypothesis is rejected. This result rejects the hypothesis expecting that similarity can directly increase purchase intention. This finding contradicts previous studies that showed similarity between influencer and audience could influence purchase intention (Freberg et al., 2011).

H2b: Influencer's attributes (inspiration) positively influence purchase intention

The hypothesis test for H2b, which examines whether Influencer's attributes positively influence (inspiration) purchase intention (INSP \rightarrow PI), shows an original sample value of 0.171, t-value of 3.035, and p-value of 0.002. Because the p-value is less than 0.05, it indicates a significant effect and thus the hypothesis is accepted. This supports previous research stating that inspiration can increase purchase intention (Kim & Kim, 2021). In this context, when audiences feel inspired by the lifestyle. appearance changes, or self-care approaches demonstrated by the influencer, they tend to have a stronger motivation to follow or try the products used by the influencer.

H2c: Influencer's attributes (authenticity) positively influence purchase intention

The hypothesis test for H2c, which examines whether influencer's attributes (authenticity) positively influence purchase intention (AUT → PI), shows that authenticity does not have a direct effect on purchase intention. The original sample value of 0.017, t-value of 0.255, and p-value of 0.799 indicate the relationship between influencer authenticity and purchase intention is not statistically significant, so this hypothesis is rejected. This finding does not support the theory that influencer authenticity can increase audience purchase intention. Previous research by Lou and Yuan (2019) suggested that authenticity can influence purchase intention; however, this study shows that authenticity might not be strong enough to directly affect buying behavior.

H2d: Influencer's attributes (influencer attractiveness) positively influence purchase intention

The hypothesis test for H2d, which examines whether influencer's attributes (influencer attractiveness) positively influence purchase intention (IA \rightarrow PI), shows that influencer attractiveness has a positive and significant effect on purchase intention, with an original sample value of 0.119, t-value of 2.092, and p-value of 0.036. Because the p-value is less than 0.05, this hypothesis is accepted. This finding supports previous research showing that influencer attractiveness can increase consumers' purchase intention (Sokolova & Kefi, 2020), especially in the beauty industry, where visual appearance is important as it heavily influences how consumers judge whether a product is effective or aligns with their personal aspirations or desires. Consumers tend to assess product effectiveness based on who uses it and how the results appear visually. Influencers with high physical attractiveness are considered able to represent the final results of using the beauty product, thus creating a positive perception for the audience.

H2e: Influencer's attributes (fun personality) positively influence purchase intention

The hypothesis test for H2e, which examines whether influencer's attribute (fun personality) positively influences purchase intention (FP \rightarrow PI), shows that fun personality has a negative but significant effect on purchase intention, with an original sample value of -0.155, t-value of 2.584, and p-value of 0.010. Although this hypothesis is statistically significant, the direction of the relationship is negative. Therefore, this hypothesis is rejected because it does not align with the expected positive direction. This finding is consistent with previous research by Silva et al. (2025) which stated that fun personality does not influence purchase intention. This indicates that the more enjoyable the personality of an influencer is perceived, the lower the tendency of the audience to purchase the products they promote.

Hypothesis Testing of the Influence of Influencer's Attributes on Follower's Feelings (Emotional Attachment)

Based on the study results, below are the original sample (O), T-Value, and P-Value measurements to determine the influence of Influencer's Attributes on Follower's Feelings (Emotional Attachment), as presented in Table 15.

Table 15. Results of Hypothesis Testing H3

Hypothesis	Original	T-value	P-value	Hypothesis	Previous Re	ious Research Findings	
21 5 P 0 0 1 1 0 0 2 5	sample	_ ,011010	- (Status	Statement	Source	
H3a: Influencer's attributes (similarity) positively affect follower's feeling (emotional attachment). (SML → EA)	0.587	7.878	0.000	Accepted	Similarity affects emotional attachment	Silva et al. (2025)	
H3b: Influencer's attributes (inspiration) positively affect follower's feeling (emotional attachment). (INSP → EA)	-0.218	2.769	0.006	Rejected	Inspiration does not affect emotional attachment	Silva et al. (2025)	
H3c: Influencer's attributes (authenticity) positively affect follower's feeling (emotional attachment). (AUT → EA)	0.278	2.879	0.004	Accepted	Authenticity affects emotional attachment	Silva et al. (2025)	
H3d: Influencer's attributes (influencer attractiveness) positively affect follower's feeling (emotional attachment). (IA → EA)	-0.356	4.498	0.000	Rejected	Influencer attractiveness affects emotional attachment	Silva et al. (2025)	
H3e: Influencer's attributes (fun personality) positively affect follower's feeling (emotional attachment). (FP → EA)	0.209	2.776	0.006	Accepted	Fun personality affects emotional attachment	Silva et al. (2025)	

H3a: Influencer's attributes (similarity) positively affect follower's feeling (emotional attachment)

The test results for hypothesis H3a, which examines whether the influencer's attribute of similarity has a positive effect on emotional attachment (SML \rightarrow EA), show that similarity has a positive and significant effect on followers' emotional attachment, with an original sample value of 0.587, a t-value of 7.878, and a p-value of 0.000. The very small p-value (< 0.05) indicates strong significance, so the hypothesis is accepted. This result is consistent with previous research that found similarity influences emotional attachment (Silva et al., 2025). This means that the higher the perceived similarity between the influencer and their followers, whether in lifestyle or personal experiences, the greater the likelihood of emotional attachment forming. This finding also aligns with Lim et al. (2020), who stated that audiences tend to form closer relationships when they feel they share similar experiences, lifestyles, or backgrounds with the influencer.

H3b: Influencer's attributes (inspiration) positively affect follower's feeling (emotional attachment)

The test results for hypothesis H3b, which examines whether the influencer's attribute of inspiration positively influences emotional attachment (INSP -> EA), show that this hypothesis is rejected. Although the t-value of 2.769 and p-value of 0.006 indicate statistical significance, the direction of the effect is negative, with an original sample value of -0.218, which does not align with the hypothesized positive relationship. This finding supports previous studies by Silva et al. (2025), which stated that the inspiration attribute does not affect emotional attachment. It suggests that inspiration from an influencer does not always produce positive emotional attachment and can evoke more complex or mixed emotional reactions among followers. This is also consistent with Kim & Kim (2021). who explained that inspiration does not always result in positive emotional effects but may cause mixed feelings such as admiration, inadequacy, or even social pressure.

H3c: Influencer's attributes (authenticity) positively affect follower's feeling (emotional attachment)

The test results for hypothesis H3c, which examines whether the influencer's attribute of authenticity positively affects emotional

attachment (AUT \rightarrow EA), show an original sample value of 0.278, a t-value of 2.879, and a p-value of 0.004. With a p-value below 0.05, this hypothesis is accepted. This result aligns with previous research that found authenticity influences emotional attachment (Silva et al., 2025). It indicates that the higher the audience's perception of an influencer's authenticity, the greater the likelihood of forming an emotional attachment to that influencer. This finding also supports Audrezet et al. (2018), who stated that authenticity plays an important role in building emotional relationships between influencers and audiences, especially in digital environments filled with promotional content.

H3d: Influencer's attributes (influencer attractiveness) positively affect follower's feeling (emotional attachment)

The test results for hypothesis H3d, which examines whether the influencer's attribute of influencer attractiveness (physical attractiveness) positively affects emotional attachment (IA \rightarrow EA), show results that contradict the hypothesis. Although statistically significant with a t-value of 4.498 and p-value of 0.000, the relationship found is negative (original sample = -0.356). This indicates that the higher the physical attractiveness of an influencer, the lower the level of emotional attachment from the audience. This result does not align with Ohanian's (1990) theory, which states that visual attractiveness is an important factor in forming emotional closeness.

H3e: Influencer's attributes (fun personality) positively affect follower's feeling (emotional attachment)

The test results for hypothesis H3e, which examines whether the influencer's attribute of fun personality positively affects emotional attachment (FP \rightarrow EA), show an original sample value of 0.209, a t-value of 2.776, and a p-value of 0.006. With a p-value < 0.05, this hypothesis is accepted. This result aligns with previous research that found fun personality influences emotional attachment (Silva et al., 2025). It confirms that a pleasant personality can strengthen emotional attachment. This finding also supports Casaló et al. (2020), who stated that a friendly, cheerful, and approachable attitude from influencers can build a closer emotional relationship with audiences.

Hypothesis Test of the Effect of Follower's Feelings (Emotional Attachment) on Transfer of Emotional Attachment

Table 16. Results of Hypothesis Test H4

Hypothesis	Original sample	T-value	P-value	Hypothesis Status	Previous Find	
	sample			Status	Statement	Statement

•		,	,	'		ISSN Onl	ine: 2613-9774
	,	0.519	10.125	0.000	Accepted	Emotional attachment influences the transfer of emotional attachment	Silva et al (2025)

H4: Follower's feelings (emotional attachment) positively affect transfer of emotional attachment

Based on the results of the hypothesis test for H4, the emotional attachment that followers have toward the beauty influencer they follow has been proven to have a positive and significant effect on the transfer of emotional attachment, with an original sample value of 0.519, t-value of 10.125, and p-value of 0.000. Thus, this hypothesis is accepted. This result aligns with previous research which found that emotional attachment affects the transfer of emotional attachment (Silva

et al., 2025). This indicates that the stronger the emotional attachment the audience has toward an influencer, the greater the likelihood that this emotion will transfer to products or brands associated with or related to the influencer. This finding supports Thomson's (2006) theory, which states that emotional attachment can be transferred to other objects associated with the original source of the emotion.

Hypothesis Test on the Effect of Follower's Feelings (Emotional Attachment) on Purchase Intention.

Table 17. Hypothesis Test Results for H5

II.mothodia	Original	T-value	P-value	Hypothesis	Previous Res	earch Findings
Hypothesis	sample	1-value	r-value	Status	Statement	Statement
H5: Follower's feelings (emotional attachment) positively affect purchase intention. (EA → PI)	0.143	2.778	0.005	Accepted	Emotional attachment does not affect purchase intention	H5: Follower's feelings (emotional attachment) positively affect purchase intention. (EA → PI)

H5: Follower's feelings (emotional attachment) positively affect purchase intention

The hypothesis test results for H5 indicate that the emotional attachment followers have towards the beauty influencer they follow has a positive and significant effect on purchase intention. The original sample value of 0.143, t-value of 2.778, and p-value of 0.005 demonstrate

that this hypothesis is statistically accepted. This finding aligns with the research by Batra et al. (2012), which states that emotional attachment to a communicator can influence consumer decisions, including product purchases.

Hypothesis Test of the Effect of Transfer of Emotional Attachment on Purchase Intention

Table 18. Results of Hypothesis Test H6

Hypothesis	Original sample	T-value	P-value	Hypothesis Status	Previous Findings Statement	Research Statement
H6: Transfer of emotional attachment positively affects purchase intention. (TEA → PI	0.485	8.214	0.000	Accepted	Transfer of emotional attachment influences purchase intention	Silva et al (2025)

H6: Transfer of emotional attachment positively influences purchase intention

The results of hypothesis H6 testing show that transfer of emotional attachment has a positive

and significant influence on purchase intention. In micro-influencers, the original sample value is 0.485, with a t-value of 8.214 and a p-value of 0.000. This indicates that statistically, the relationship between emotional attachment and purchase intention is very strong. This result is in line with previous research which found that transfer of emotional attachment influences purchase intention (Silva et al., 2025). This finding also supports the study by Lim et al. (2020), which explains that emotional closeness between the audience and the influencer can be transferred to

the products used or recommended. In other words, when someone feels connected to an influencer, they also tend to feel close to the products associated with that influencer. This closeness then makes consumers more trusting and interested in purchasing the product, because they feel the product becomes a part of the emotional relationship that has already been formed.

Hypothesis Testing of the Influence of Influencer's Attributes on Follower's Feelings (Envy).

Table 19. Hypothesis Test Results for H7

	Original			Hypothesis	Previous	Research
Hypothesis	sample	T-value	P-value	Status	Findings Statement	Statement
H7a: Influencer's attributes (similarity) positively influence follower's feeling (envy). (SML→E)	0.409	5.177	0.000	Accepted	Similarity does not influence envy	Silva et al. (2025)
H7b: Influencer's attributes (inspiration) positively influence follower's feeling (envy). (INSP→E)	-0.348	4.469	0.000	Rejected	Inspiration does not influence envy	Silva et al. (2025)
H7c: Influencer's attributes (authenticity) positively influence follower's feeling (envy). (AUT→E)	0.257	3.188	0.001	Accepted	Authenticity influences envy	Silva et al. (2025)
H7d: Influencer's attributes (influencer attractiveness) positively influence follower's feeling (envy). (IA→E)	-0.362	4.780	0.000	Rejected	Influencer attractiveness influences envy	Silva et al. (2025)
H7e: Influencer's attributes (fun personality) positively influence follower's feeling (envy). (FP→E)	0.093	1.242	0.214	Rejected	Fun personality influences envy	Silva et al. (2025)

H7a: Influencer's attributes (similarity) positively affect follower's feeling (envy)

Hypothesis H7a states that the influencer's attribute, in this case similarity, positively affects the feeling of envy experienced by followers. The results of this study confirm that this hypothesis is significantly accepted, with an original sample value of 0.409, T-value of 5.177, and P-value of

0.000. The positive effect of similarity on envy is statistically very strong, indicating that the greater the perceived similarity between followers and the influencer, the higher the tendency for followers to feel envy.

H7b: Influencer's attributes (inspiration) positively affect follower's feeling (envy)

Hypothesis H7b states that the influencer's attribute of inspiration affects the feeling of envy. The results show that although this relationship is statistically significant (T-value = 4.469, P-value = 0.000), the direction of the relationship is negative, with an original sample value of -0.348. Since this direction contradicts the initial hypothesis, which expected a positive relationship, this hypothesis is rejected. This indicates that the higher the level of inspiration provided by the influencer, the tendency for followers to feel envy tends to decrease.

H7c: Influencer's attributes (authenticity) positively affect follower's feeling (envy)

Hypothesis H7c states that the attribute of authenticity from an influencer positively affects the feeling of envy experienced by followers. The study results show that this hypothesis is significantly accepted, with an original sample value of 0.257, T-value of 3.188, and P-value of 0.001. The influence of authenticity on envy is statistically significant and shows a positive direction. This result aligns with previous research that found authenticity affects envy (Silva et al., 2025). In other words, the more a follower perceives an influencer as an authentic personhonest, consistent, and genuine—the greater the likelihood of feeling envy. This suggests that authenticity can also evoke envy because followers see the influencer's real and unpretentious life as highly ideal or satisfying. This analysis strengthens the idea that envy in the influencer world does not only arise from luxury but also from an image of simplicity considered authentic yet difficult to fully imitate. The envy triggered by authenticity is subtle and non-aggressive, as explained by Audrezet et al. (2018). It is not due to influencers showing off or superiority, but because they present a complete version of themselves that is warmly accepted by the public.

H7d: Influencer's attributes (influencer attractiveness) positively affect follower's feeling (envy)

Hypothesis H7d states that the attractiveness of an influencer positively affects the feeling of envy experienced by followers. The study results

show that although the relationship is statistically significant (T-value = 4.780, P-value = 0.000), the direction of the relationship is negative (original sample = -0.362), so this hypothesis is rejected. These results indicate that the higher the physical attractiveness of an influencer, the lower the level of envy felt by the audience. This finding does not align with Liu et al. (2019), which suggested that influencer attractiveness can provoke envy, not just admiration. Nevertheless, this negative result does not directly imply that influencer attractiveness does not trigger emotional reactions but may indicate a more complex form of envy, such as a mixture of admiration, inferiority, and desire to be like the influencer.

H7e: Influencer's attributes (fun personality) positively affect follower's feeling (envy)

Hypothesis H7e states that a fun personality of an influencer positively affects the feeling of envy experienced by followers. This personality is usually expressed through cheerful, humorous, spontaneous, and enthusiastic attitudes that make the content feel more relatable and entertaining. Theoretically, this character can increase engagement and the strengthen emotional connection between influencer and followers. However, this hypothesis is also based on the assumption that in the process of comparing themselves to influencers who always appear cheerful and popular, followers might feel envy because they cannot project a similar image or gain the same social attention. Nonetheless, the study results show this hypothesis is rejected. With an original sample value of 0.093, T-value of 1.242, and P-value of 0.214, no significant effect was found between fun personality and envy. This indicates that although a fun personality may make an influencer likable, this trait is not strong enough to evoke envy from followers. It can be said that followers might see the cheerful and fun side of influencers as something entertaining motivating, rather than a threat that triggers negative feelings.

Hypothesis Test of Follower's Feelings (Envy) on Transfer of Emotional Attachment

Table 20. Results of Hypothesis Test H8

	2 44 22		ss or ray pour	TODIO TODE TIO		
Hypothesis	Original sample	T-value	P-value	Hypothesis Status	Previous Findings Statement	Research Source
H8: Followers feelings	-0.009	0.317	0.752	Rejected	Envy	Silva et al
(envy) positively					influences	(2025)
influence the transfer of					the transfer	
emotional attachment.					of emotional	
$(E \rightarrow TEA)$					attachment	

H8: Follower's feelings (envy) positively affect transfer of emotional attachment

The test results for hypothesis H8 show that envy does not have a significant effect on the transfer of emotional attachment (TEA). The hypothesis test yielded an original sample value of -0.009, a t-value of 0.317, and a p-value of 0.752, indicating that although envy toward the lifestyle or appearance of a beauty influencer may arise, this feeling is not strong enough to drive the

transfer of emotional attachment from the influencer to the promoted brand or product. This means that even though followers may feel envy toward the influencer's lifestyle or achievements, such envy is insufficient to encourage followers to transfer their emotional attachment to the products or brands promoted by the influencer (Chae, 2018).

Hypothesis Test of the Effect of Follower's Feelings (Envy) on Purchase Intention

Table 21. Results of Hypothesis Test H9

Hypothesis	Original sample	T-value	P-value	Hypothesis Status	Previous Findings Statement	Research Statement
H9: Follower's feelings (envy)	0.043	1.384	0.166	Rejected	Envy influences	Silva et al (2025)
positively influence					purchase	,
purchase intention.					intention	
$(E \rightarrow PI)$						

H9: Follower's feelings (envy) positively influence purchase intention

The hypothesis test for H9 was conducted to examine whether the feeling of envy experienced by followers toward the beauty influencers they follow directly affects purchase intention. Based on the analysis results, the original sample value was 0.043, t-value was 1.384, and p-value was 0.166, indicating that there is no statistically significant effect. Therefore, this hypothesis is rejected because envy is not proven to directly drive purchase intention. Previous research has shown that envy can influence purchase intention, but not directly (Chae, 2018).

Multigroup Analysis (MGA) Test

Based on the results of the multigroup analysis test shown in Table 4.28, significant differences were found in the path relationships between variables for several variables between the mega-influencer group and the micro-influencer group, especially in the context of the beauty

industry. For the mega-influencer group, the path from Authenticity to Emotional Attachment (AUT \rightarrow EA) showed a significant result (p=0.000). This indicates that although mega-influencers are often perceived as commercial or promotion-focused, a beauty mega-influencer is still able to create a sincere impression that can build emotional attachment with their followers. Conversely, in the micro-influencer group, this path was found to be insignificant; however, the path from Authenticity to Transfer of Emotional Attachment (AUT -> TEA) was highly significant (p=0.001). This suggests that the genuine impression from a beauty micro-influencer can directly encourage consumers to transfer their emotional attachment to the product or brand without first having an emotional attachment to the influencer themselves. Therefore, beauty micro-influencers are more effective in establishing a direct relationship between authentic perception and brand interest.

Table 22. Results of Multigroup Analysis (MGA) Test

	Mega-influencer			Micro-influencer		
Variable	Original Sample	t value	p value	Original Sample	t value	p value
AUT -> E	0.276	2.738	0.006	0.293	2.078	0.038
$AUT \rightarrow EA$	0.418	4.536	0.000	0.116	0.666	0.505
AUT -> PI	0.050	0.570	0.569	0.076	0.793	0.428
$AUT \rightarrow TEA$	0.013	0.119	0.905	0.321	3.386	0.001
E -> PI	0.009	0.215	0.830	0.068	1.651	0.099
$E \rightarrow TEA$	0.032	0.895	0.371	-0.048	1.189	0.235
EA -> PI	0.008	0.115	0.908	0.280	4.181	0.000
$EA \rightarrow TEA$	0.524	6.168	0.000	0.482	9.216	0.000
FP -> E	0.091	1.000	0.317	0.134	0.935	0.350
$FP \rightarrow EA$	0.160	1.922	0.055	0.359	2.502	0.012
FP -> PI	-0.169	2.258	0.024	-0.098	1.073	0.283
$FP \rightarrow TEA$	0.103	1.377	0.168	0.154	1.861	0.063
$IA \rightarrow E$	-0.353	3.606	0.000	-0.158	1.285	0.199
$IA \rightarrow EA$	-0.320	3.482	0.001	-0.204	1.514	0.130
IA -> PI	0.062	0.886	0.376	0.228	2.637	0.008
$IA \rightarrow TEA$	0.118	1.440	0.150	0.092	1.139	0.255
$INSP \rightarrow E$	-0.167	1.771	0.077	-0.446	3.834	0.000
$INSP \rightarrow EA$	-0.077	0.966	0.334	-0.287	2.545	0.011
INSP -> PI	0.204	2.916	0.004	0.115	1.274	0.203
$INSP \rightarrow TEA$	0.100	1.275	0.202	-0.035	0.430	0.668
$SML \rightarrow E$	0.333	3.268	0.001	0.254	1.702	0.089
$SML \rightarrow EA$	0.464	5.593	0.000	0.507	3.183	0.001
$SML \rightarrow PI$	0.205	1.952	0.051	-0.027	0.237	0.813
$SML \rightarrow TEA$	0.120	1.516	0.130	0.032	0.357	0.721
TEA -> PI	0.537	6.953	0.000	0.372	4.603	0.000

Another notable difference appears in the Influencer Attractiveness (IA) variable. The path IA \rightarrow Purchase Intention (PI) is significant in the micro-influencer group (p=0.008), but not significant in the mega-influencer group. This

indicates that an influencer's attractive appearance or personality has a stronger impact on purchase intention when it comes from someone perceived as more relatable and accessible. A similar pattern is observed in the Fun Personality (FP) variable,

ISSN Online: 2613-9774 envy itself does not serve as an appropriate emotional basis for building emotional attachment or purchase intention.

ISSN Cetak : 2337-3997

where the path $FP \rightarrow Emotional$ Attachment (EA) is significant for micro-influencers (p=0.012), but not significant for mega-influencers (p=0.055), although the value is nearly significant. This finding reinforces that the fun and engaging personality of beauty micro-influencers is more effective in fostering emotional connections with their followers.

Conversely, for mega-influencers, a fun personality directly influences purchase intention (p=0.024) without necessarily establishing emotional attachment first.

Furthermore, the Inspiration (INSP) variable also shows an interesting pattern. The paths INSP \rightarrow EA and INSP \rightarrow Envy (E) are significant for micro-influencers but not significant for mega-influencers. This suggests that beauty micro-influencers are more effective in providing inspiration that generates emotional attachment and positive feelings, likely because they are seen as more relatable and easier to emulate. In contrast, for mega-influencers, the path INSP \rightarrow PI is significant (p=0.004), indicating that inspiration from a beauty mega-influencer tends to directly encourage followers to make a purchase without needing to form an emotional bond first.

In the Similarity (SML) variable, the path SML \rightarrow EA is highly significant for both groups, confirming that similarity between the audience and the influencer is an important factor in building emotional attachment. However, this similarity does not significantly influence purchase intention in the micro-influencer group (p=0.813), while it is nearly significant in the mega-influencer group (p=0.051). This may be because perceived similarity reduces the psychological distance between the influencer and their followers.

Additionally, Emotional Attachment (EA) plays a major role in driving Purchase Intention among micro-influencers (p=0.000), but is not significant for mega-influencers. This shows that emotional approaches by micro-influencers are more effective in building loyalty and preference toward a product or brand.

On the other hand, the path from Transfer of Emotional Attachment (TEA) to purchase intention (TEA \rightarrow PI) shows significant results in both groups. This supports the importance of emotional attachment to the influencer being transferred to the brand as a key factor influencing consumer purchase intention.

Meanwhile, the Envy (E) variable does not show a significant influence on either Transfer of Emotional Attachment (TEA) or Purchase Intention (PI) in both groups. This indicates that although the beauty industry often promotes ideal beauty standards that may trigger feelings of envy,

CONCLUSION

This study was conducted with the aim of examining and understanding how influencer attributes affect the transfer of emotional attachment and purchase intention, both directly and as mediated by emotional attachment and envy, by comparing the effectiveness of microinfluencers and mega-influencers in Indonesia's beauty industry.

The results of the study show that not all influencer attributes have a significant direct effect on the transfer of emotional attachment (TEA) and purchase intention (PI). It was found that among the five influencer attributes tested, only the fun personality attribute had a significant direct effect on both purchase intention and the transfer of emotional attachment. Meanwhile, the attributes inspiration and influencer attractiveness had a significant direct effect on purchase intention but not on the transfer of emotional attachment. On the other hand, the attributes authenticity and similarity did not show a significant direct effect on either purchase intention or transfer of emotional attachment.

Regarding the mediating variables such as emotional attachment (EA) and envy (E), the analysis showed that emotional attachment plays a significant mediating role in bridging the influence of several influencer attributes on both the transfer of emotional attachment and purchase intention. Significant paths mediation include relationship between all influencer attributes through emotional attachment to both the transfer of emotional attachment and purchase intention. Furthermore, a significant path was also found where the transfer of emotional attachment acts as a mediator, such as in the case of fun personality $(FP \rightarrow TEA \rightarrow PI)$. In contrast, envy did not show any significant mediating role in any path, either toward the transfer of emotional attachment or purchase intention. This indicates that in the context of the beauty industry, positive emotions built through emotional attachment are far more effective in strengthening the connection between consumers and influencers and in increasing purchase intention, compared to negative emotions such as envy.

Additionally, this study found that the transfer of emotional attachment has a significant direct effect on purchase intention. This implies that the stronger the emotional attachment transferred from a beauty influencer to the product

or brand they recommend, the more likely the audience is to have the intention to purchase the product. In the context of Indonesia's beauty industry, this finding reinforces the conclusion that building a strong emotional connection between consumers and influencers is crucial—especially when that attachment can be effectively transferred to the brand or product recommended by the beauty influencer.

The study also found differences in the influence patterns between micro-influencers and mega-influencers in affecting the transfer of emotional attachment and purchase intention. Among micro-influencers, the paths $EA \rightarrow PI$, EA \rightarrow TEA, and IA \rightarrow PI were the most consistent and significant. Furthermore, attributes such as fun personality, inspiration, and similarity were found to influence emotional attachment. In contrast, among mega-influencers, significant direct effects were limited to INSP \rightarrow PI, FP \rightarrow PI, SML \rightarrow EA, and TEA \rightarrow PI. These findings suggest that beauty micro-influencers tend to be more capable of building strong emotional relationships with their followers, making them more effective in driving purchase intention. Meanwhile, mega-influencers have an advantage in reaching a broader audience.

ACKNOWLEDGEMENT

We would like to express our deepest gratitude to all parties who have contributed to this research. Thank you to colleagues who have provided advice, support, and inspiration during the research process. We would also like to thank all participants and respondents who have taken the time to participate in this research. We would also like to thank the institutions that have provided support and facilities in carrying out this research. All contributions and assistance provided are very meaningful for the smoothness and success of this research. Thank you for all the hard work and collaboration that has been established.

BIBLIOGRAPHY

- Al-Emadi, F. A., & Ben Yahia, I. (2020). Ordinary celebrities related criteria to harvest fame and influence on social media. *Journal of Research in Interactive Marketing*, 14(2), 195–213. https://doi.org/10.1108/JRIM-02-2018-0031
- AlFarraj, O., Alalwan, A. A., Obeidat, Z. M., Baabdullah, A., Aldmour, R., & Al-Haddad, S. (2021). Examining the impact of influencers' credibility dimensions: attractiveness, trustworthiness and expertise on the purchase intention in the aesthetic dermatology industry. *Review of*

International Business and Strategy, 31(3), 355–374. https://doi.org/10.1108/RIBS-07-2020-0089

ISSN Cetak : 2337-3997

ISSN Online: 2613-9774

- Andi Dwi Riyanto. (2023, April 18). *Hootsuite* (We are Social): Indonesian Digital Report 2023. Andi.Link.
- Audrezet, A., de Kerviler, G., & Guidry Moulard, J. (2020). Authenticity under threat: When social media influencers need to go beyond self-presentation. *Journal of Business Research*, 117, 557–569. https://doi.org/10.1016/j.jbusres.2018.07.
- Bowlby, J. (1969). Attachment and Loss: Vol. 1. Attachment. Basic Books.
- Byrne, D. (1971). *The Attraction Paradigm*. Academic Press.
- Cabeza-Ramírez, L. J., Sánchez-Cañizares, S. M., Santos-Roldán, L. M., & Fuentes-García, F. J. (2023). Exploring the effectiveness of fashion recommendations made by social media influencers in the centennial generation. *Textile Research Journal*, 93(13–14), 3240–3261. https://doi.org/10.1177/00405175231155 860
- Campbell, C., & Farrell, J. R. (2020). More than meets the eye: The functional components underlying influencer marketing. *Business Horizons*, 63(4), 469–479. https://doi.org/10.1016/j.bushor.2020.03. 003
- Casaló, L. V., Flavián, C., & Ibáñez-Sánchez, S. (2020). Influencers on Instagram: Antecedents and consequences of opinion leadership. *Journal of Business Research*, 117, 510–519. https://doi.org/10.1016/j.jbusres.2018.07. 005
- Cheng, Y., Chen, Y.-R. R., & Hung-Baesecke, C.-J. F. (2021). Social Media Influencers in CSR Endorsement: The Effect of Consumer Mimicry on CSR Behaviors and Consumer Relationships. *Social Science Computer Review*, 39(4), 744–761. https://doi.org/10.1177/0894439320987184
- (Chloe) Ki, C.-W., Park, S., & Kim, Y.-K. (2022). Investigating the mechanism through which consumers are "inspired by" social media influencers and "inspired to" adopt influencers' exemplars as social defaults. *Journal of Business Research*, 144, 264–277.

- https://doi.org/10.1016/j.jbusres.2022.01. 071
- Chopra, A., Avhad, V., & Jaju, and S. (2021).

 Influencer Marketing: An Exploratory
 Study to Identify Antecedents of
 Consumer Behavior of Millennial.

 Business Perspectives and Research,
 9(1), 77–91.

 https://doi.org/10.1177/22785337209234
- de Oliveira Santini, F., Ladeira, W. J., Pinto, D. C., Herter, M. M., Sampaio, C. H., & Babin, B. J. (2020). Customer engagement in social media: a framework and meta-analysis. *Journal of the Academy of Marketing Science*, 48(6), 1211–1228. https://doi.org/10.1007/s11747-020-00731-5
- De Veirman, M., Cauberghe, V., & Hudders, L. (2017). Marketing through Instagram influencers: the impact of number of followers and product divergence on brand attitude. *International Journal of Advertising*, 36(5), 798–828. https://doi.org/10.1080/02650487.2017.1 348035
- Djafarova, E., & Rushworth, C. (2017). Exploring the credibility of online celebrities' Instagram profiles in influencing the purchase decisions of young female users. *Computers in Human Behavior*, 68, 1–7. https://doi.org/10.1016/j.chb.2016.11.009
- Dwivedi, A., Johnson, L. W., & McDonald, R. (2016). Celebrity endorsements, self-brand connection and relationship quality. *International Journal of Advertising*, 35(3), 486–503. https://doi.org/10.1080/02650487.2015.1 041632
- Dwivedi, A., Johnson, L. W., Wilkie, D. C., & De Araujo-Gil, L. (2019). Consumer emotional brand attachment with social media brands and social media brand equity. *European Journal of Marketing*, 53(6), 1176–1204. https://doi.org/10.1108/EJM-09-2016-0511
- Evans, D. (2012). Social Media Marketing: The Next Generation of Business Engagement. Wiley.
- Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing (pp. 277–319). https://doi.org/10.1108/S1474-

- 7979(2009)0000020014
- Hovland, C. I., J. I. L., & K. H. H. (1953). *Communication and Persuasion*. Yale University Press.
- Hovland, C. I., & Weiss, W. (1951). The Influence of Source Credibility on Communication Effectiveness. *Public Opinion Quarterly*, 15(4), 635. https://doi.org/10.1086/266350
- Hung, K., Chan, K. W., & Tse, C. H. (2011).

 Assessing Celebrity Endorsement Effects in China. *Journal of Advertising Research*, 51(4), 608–623. https://doi.org/10.2501/JAR-51-4-608-623
- Jin, S. V., & Muqaddam, A. (2019). Product placement 2.0: "Do Brands Need Influencers, or Do Influencers Need Brands?" *Journal of Brand Management*, 26(5), 522–537. https://doi.org/10.1057/s41262-019-00151-z
- Jin, S. V., & Muqaddam, A. (2021). "Fame and Envy 2.0" in luxury fashion influencer marketing on Instagram: Comparison between mega-celebrities and microcelebrities. *International Journal of Internet Marketing and Advertising*, 15(2), 176–200. https://doi.org/10.1504/IJIMA.2021.1143
- John, S. P., Walford, R., & Purayidathil, J. (2022). Factors Affecting the Adoption of Social Media in Marketing of Higher Education: An Empirical Analysis. *FIIB Business Review*, 11(4), 422–437. https://doi.org/10.1177/23197145211072 198
- Jun, S., & Yi, J. (2020). What makes followers loyal? The role of influencer interactivity in building influencer brand equity. *Journal of Product & Brand Management*, 29(6), 803–814. https://doi.org/10.1108/JPBM-02-2019-2280
- Kahle, L. R., & Homer, P. M. (1985). Physical Attractiveness of the Celebrity Endorser: A Social Adaptation Perspective. *Journal of Consumer Research*, 11(4), 954. https://doi.org/10.1086/209029
- Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. *Business Horizons*, 53(1), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003
- Ki, C.-W. (Chloe), Cuevas, L. M., Chong, S. M.,

- & Lim, H. (2020). Influencer marketing: Social media influencers as human brands attaching to followers and yielding positive marketing results by fulfilling needs. *Journal of Retailing and Consumer Services*, 55, 102133. https://doi.org/10.1016/j.jretconser.2020. 102133
- Kim, D. Y., & Kim, H.-Y. (2021). Trust me, trust me not: A nuanced view of influencer marketing on social media. *Journal of Business Research*, 134, 223–232. https://doi.org/10.1016/j.jbusres.2021.05. 024
- Kim, H., & Park, M. (2023). Virtual influencers' attractiveness effect on purchase intention: A moderated mediation model of the Product–Endorser fit with the brand. *Computers in Human Behavior*, 143, 107703. https://doi.org/10.1016/j.chb.2023.10770
- Kim, M., & Baek, T. H. (2022). I'll follow the fun: The extended investment model of social media influencers. *Telematics and Informatics*, 74, 101881. https://doi.org/10.1016/j.tele.2022.10188
- Kotler, P., K. H., & S. I. (2017). *Marketing 4.0: Moving from Traditional to Digital*.
 Wiley.
- Kowalczyk, C. M., & Pounders, K. R. (2016). Transforming celebrities through social media: the role of authenticity and emotional attachment. *Journal of Product & Brand Management*, 25(4), 345–356. https://doi.org/10.1108/JPBM-09-2015-0969
- Ladhari, R., Massa, E., & Skandrani, H. (2020). YouTube vloggers' popularity and influence: The roles of homophily, emotional attachment, and expertise. *Journal of Retailing and Consumer Services*, 54, 102027. https://doi.org/10.1016/j.jretconser.2019. 102027
- Lee, J. A., & Eastin, M. S. (2020). I Like What She's #Endorsing: The Impact of Female Social Media Influencers' Perceived Sincerity, Consumer Envy, and Product Type. *Journal of Interactive Advertising*, 20(1), 76–91. https://doi.org/10.1080/15252019.2020.1737849
- Lee, J. A., & Eastin, M. S. (2021). Perceived authenticity of social media influencers: scale development and validation.

- Journal of Research in Interactive Marketing, 15(4), 822–841. https://doi.org/10.1108/JRIM-12-2020-0253
- Lee, J. A., Sudarshan, S., Sussman, K. L., Bright, L. F., & Eastin, M. S. (2022). Why are consumers following social media influencers on Instagram? Exploration of consumers' motives for following influencers and the role of materialism. *International Journal of Advertising*, 41(1), 78–100. https://doi.org/10.1080/02650487.2021.1 964226
- Lei, B., Shi, S., & Liu, W. (2024). The effect mechanism of the celebrity persona on consumers' purchase intention: based on the analysis of the grounded theory. *Kybernetes*, 53(7), 2322–2341. https://doi.org/10.1108/K-09-2022-1300
- Li, W., Zhao, F., Lee, J. M., Park, J., Septianto, F., & Seo, Y. (2024). How micro- (vs. mega-) influencers generate word of mouth in the digital economy age: The moderating role of mindset. *Journal of Business Research*, 171. https://doi.org/10.1016/j.jbusres.2023.11 4387
- Lim, X. J., Mohd Radzol, A. R. bt, Cheah, J.-H. (Jacky), & Wong, M. W. (2017). The Impact of Social Media Influencers on Purchase Intention and the Mediation Effect of Customer Attitude. *Asian Journal of Business Research*, 7(2). https://doi.org/10.14707/ajbr.170035
- Lou, C., & Yuan, S. (2019). Influencer Marketing: How Message Value and Credibility Affect Consumer Trust of Branded Content on Social Media. *Journal of Interactive Advertising*, 19(1), 58–73. https://doi.org/10.1080/15252019.2018.1 533501
- Macheka, T., Quaye, E. S., & Ligaraba, N. (2024). The effect of online customer reviews and celebrity endorsement on young female consumers' purchase intentions. *Young Consumers*, 25(4), 462–482. https://doi.org/10.1108/YC-05-2023-1749
- Mae. (2024, April 27). Belanja Kecantikan Warga RI Hampir Rp 3 T, Lebih Besar dari Makanan. CNBC Indonesia.
- McGuire, W. J. (1985). Attitudes and Attitude Change. In G. & A. E. Lindzey (Ed.), *Handbook of Social Psychology*. Random House.

- Na, Y., Kim, Y., & Lee, D. (2024). Investigating the Effect of Self-Congruity on Attitudes toward Virtual Influencers: Mediating the Effect of Emotional Attachment.

 International Journal of Human—Computer Interaction, 40(18), 5534—5547.
 - https://doi.org/10.1080/10447318.2023.2 238365
- Naderer, B., Matthes, J., & Schäfer, S. (2021). Effects of disclosing ads on Instagram: the moderating impact of similarity to the influencer. *International Journal of Advertising*, 40(5), 686–707. https://doi.org/10.1080/02650487.2021.1 930939
- Ohanian, R. (1990). Construction and Validation of a Scale to Measure Celebrity Endorsers' Perceived Expertise, Trustworthiness, and Attractiveness. *Journal of Advertising*, 19(3), 39–52. https://doi.org/10.1080/00913367.1990.1 0673191
- Priester, J. R., & Petty, R. E. (2003). The Influence of Spokesperson Trustworthiness on Message Elaboration, Attitude Strength, and Advertising Effectiveness. *Journal of Consumer Psychology*, 13(4), 408–421. https://doi.org/10.1207/S15327663JCP13 04 08
- Pulizzi, J. (2014). Epic Content Marketing: How to Tell a Different Story, Break Through the Clutter, and Win More Customers by Marketing Less. McGraw-Hill Education.
- Reinikainen, H., Munnukka, J., Maity, D., & Luoma-aho, V. (2020). 'You really are a great big sister' parasocial relationships, credibility, and the moderating role of audience comments in influencer marketing. *Journal of Marketing Management*, 36(3–4), 279–298. https://doi.org/10.1080/0267257X.2019.1

708781

- Sánchez-Fernández, R., & Jiménez-Castillo, D. (2021). How social media influencers affect behavioural intentions towards recommended brands: the role of emotional attachment and information value. *Journal of Marketing Management*, 37(11–12), 1123–1147. https://doi.org/10.1080/0267257X.2020.1 866648
- Schouten, A. P., Janssen, L., & Verspaget, M. (2020). Celebrity vs. Influencer endorsements in advertising: the role of

- identification, credibility, and Product-Endorser fit. *International Journal of Advertising*, 39(2), 258–281. https://doi.org/10.1080/02650487.2019.1634898
- Silva, M. J. de B., Campos, P. de O., Gomes, J. de P., Melo, F. V. S., & de Moura, M. R. F. (2025). Proposing an integrative scale of digital influence in the context of influencer marketing. *Journal of Business Research*, 189. https://doi.org/10.1016/j.jbusres.2024.11 5152
- Silva, M. J. de B., Farias, S. A. de, & Silva, C. J. (2023). Endorsement on Instagram and cultural dimensions: an analysis of digital influencers. *The Bottom Line*, *36*(1), 1–28. https://doi.org/10.1108/BL-12-2021-0127
- Siti Sarah Jauhari. (2023, November 29). *Produk* Fashion Jadi Produk yang Paling Banyak Dibeli di Online Shop. Goodstats.
- Soderberg, A. T., & Romney, A. C. (2022). Building trust: How leaders can engender feelings of trust among followers. *Business Horizons*, 65(2), 173–182. https://doi.org/10.1016/j.bushor.2021.02. 031
- Sokolova, K., & Kefi, H. (2020). Instagram and YouTube bloggers promote it, why should I buy? How credibility and parasocial interaction influence purchase intentions. *Journal of Retailing and Consumer Services*, 53, 101742. https://doi.org/10.1016/j.jretconser.2019. 01.011
- Tai, K., Narayanan, J., & McAllister, D. J. (2012). Envy As Pain: Rethinking the Nature of Envy and Its Implications for Employees and Organizations. *Academy of Management Review*, *37*(1), 107–129. https://doi.org/10.5465/amr.2009.0484
- Thomson, M., MacInnis, D. J., & Whan Park, C. (2005a). The Ties That Bind: Measuring the Strength of Consumers' Emotional Attachments to Brands. *Journal of Consumer Psychology*, 15(1), 77–91. https://doi.org/10.1207/s15327663jcp1501_10
- Thomson, M., MacInnis, D. J., & Whan Park, C. (2005b). The Ties That Bind: Measuring the Strength of Consumers' Emotional Attachments to Brands. *Journal of Consumer Psychology*, 15(1), 77–91. https://doi.org/10.1207/s15327663jcp1501_10
- Tuten, T. L., & S. M. R. (2017). Social Media

Marketing. SAGE Publications.

- van de Ven, N. (2017). Envy and admiration: emotion and motivation following upward social comparison. *Cognition and Emotion*, 31(1), 193–200. https://doi.org/10.1080/02699931.2015.1 087972
- Wang, S. W., & Scheinbaum, A. C. (2018). Enhancing Brand Credibility Via Celebrity Endorsement. *Journal of Advertising Research*, 58(1), 16–32. https://doi.org/10.2501/JAR-2017-042
- Wang, T., Thai, T. D.-H., Yeh, R. K.-J., & Tamariz Fadic, C. (2024). Unveiling the effect of benign and malicious envy toward social media influencers on brand choice. *Journal of Research in Interactive Marketing*, 18(2), 275–293. https://doi.org/10.1108/JRIM-11-2022-0335
- Weismueller, J., Harrigan, P., Wang, S., & Soutar, G. N. (2020). Influencer Endorsements: How Advertising Disclosure and Source Credibility Affect Consumer Purchase Intention on Social Media. *Australasian Marketing Journal*, 28(4), 160–170. https://doi.org/10.1016/j.ausmj.2020.03.0 02
- Wissman, B. (2018, March 2). "Micro-Influencers: The Marketing Force Of The Future." Https://Www.Forbes.Com.
- Yan, Q., Chen, Y., Jiang, Y., & Chen, H. (2023). Exploring the impact of envy and admiration on social media fatigue: Social media loneliness and anxiety as mediators. *Current Psychology*, 42(20), 16830–16843. https://doi.org/10.1007/s12144-022-02904-7
- Zhang, X., & Choi, J. (2022). The Importance of Social Influencer-Generated Contents for User Cognition and Emotional Attachment: An Information Relevance Perspective. *Sustainability*, *14*(11), 6676. https://doi.org/10.3390/su14116676